

- 1 -

Programming the computer

Programming the computer consists in producing a series of commands that the computer can
understand in order to produce a desired action. Typical actions that electronic computers can
perform are input and output of data, data processing, and control of interfaces or other
devices.

At the most basic level, an electronic computer simply interprets voltage pulses as data or
commands. From a mathematical point of view, the basic processing of information by the
computer consists in the manipulation and interpretation of binary digits or bits (i.e., zeros and
ones). At this level, thus, commands are represented by strings of zeros and ones.
Communicating with the computer at its most basic level takes place through the use of binary
or machine language. Trying to type in these binary commands for computer programming
would be overwhelmingly slow and tedious. The use of human-like language significantly
facilitates the programming of computers.

The next level of computer language is referred to as assembly or assembler language. It
consists of simple commands like ADD, STORE, RECALL, etc., followed by memory addresses
within the computer. Although an improvement over machine language, assembly or assembler
languages are still quite primitive. High-level languages such as FORTRAN 90, C++, C#, Java,
Visual Basic 6.0, etc., with their human-language-like syntaxes (typically, English) facilitate the
programming of the computer for most human programmers.

Each one of these high-level languages possesses its own syntaxes or language rules. Violation
of the syntaxes of a specific language will result in failure of programming the computer.
Programs in high-level languages are typically typed into the computer in the form of text files,
and then run through a special program referred to as an interpreter or a compiler. The
interpreter or compiler translates the programs into machine language, the basic language that
all computers understand.

Tools for programming
Typically, to write a program, the programmer starts by selecting or designing an algorithm,
i.e., a plan for performing the action required from the computer. An algorithm can be simply
a series of sequential steps that the computer must perform to produce a result. For example,
if we intent to use the computer to add two numbers (a relatively simple operation, mind you),
we can describe the corresponding algorithm in words as follows: input the first number, input
the second number, add the two numbers, store the resulting number into a memory location,
show the number in the screen.

Flow charts
An algorithm can be presented or described using a flowchart. A flowchart is simply a
collection of geometric figures connected by arrows that illustrate the flow of the algorithmic
process. The geometric figures contain information in the form of commands or mathematical
operations describing the algorithm and the arrows indicate the sequence of steps in the
algorithm. The following flowchart describes the algorithm written above for the addition of
two numbers.

This flowchart is quite detailed for a simple operation. A more simplified version is shown
below:

- 2 -

Many at times, a sequential flowchart will be presented with a vertical
flow as illustrated in the figure to the right.

The basic components of a flowchart are the following geometric shapes,
plus the arrows:

In the previous example we used all but the “decision” shape. We will show examples of
decision algorithms later in the class.

Coding a program
The listing of a program written in a high-level language is also referred to as code. For
example, the code corresponding to the flowchart shown earlier, when written in Visual Basic
6.0, would look like this:

Private Sub Add_Click()
Dim a As Single
Dim b As Single
Dim c As Single
a = Val(txtA.text)
b = Val(txtB.text)
c = a + b
picOutput.Print “c =”, c

End Sub

The line Private Sub Add_Click() can be thought of as representing the start circle in the
flowchart, while the line End Sub can be thought as representing the end circle in the
flowchart. The statements a = Val(txtA.text)and b = Val(txtB.text) represent the
input boxes in the flowchart, while the statement picOutput.Print “c =”, c represents
the output box in the flowchart. The statement c = a+b represents the process box in the
flowchart above.

The lines that start with Dim are specification statements that are used to identify the
variables used in the code. For example, the statement Dim a As Single, for example,
identifies variable a as a single-precision variable. (Single-precision variables are used to store
real numbers -- i.e., numbers that may have a decimal part -- using one word [8 bytes] of
memory. To carry more decimals, double-precision variables -- i.e., those incorporating two
words of memory, or 16 byte -- can be used. Integer numbers can be stored in integer
variables).

- 3 -

Specification statements need not be included in a flowchart. Furthermore, some high-level
programming languages do not require the inclusion of specification statements. For example,
the code for the previous flowchart can be written in SCILAB as follows:

Function add()
a = input(“Enter a:”)
b = input(“Enter b:”)
c = a + b
disp(c, “c=”)

In SCILAB all variables are stored in double-precision format. Thus, as soon as the statement is
executed, a double-precision memory location with the name a is created. Also, notice that
this SCILAB function does not require an end statement.

Pseudo-code
While flowcharts are useful guides for describing an algorithm, producing a flowchart can
become quite complicated, particularly if done by hand. Also, modification of a hand-made
flowchart can be quite involved. Luckily, flowcharting software are now available that can
simplify the process. If one doesn’t want to get involved in producing a flowchart, one can
use another technique known as pseudo-code.

Pseudo-code simply means writing the algorithm in brief English-like sentences that can be
understood by any programmer. For example, a pseudo-code corresponding to the algorithm
described in the flowchart shown earlier is presented next:

Start

Input a, b
a ! b + c
Display c

End

Notice the use of the algorithmic sentence a ! b + c, in both the flowchart and the
pseudo-code, to indicate that the addition of a and b is to be stored in variable c. This
algorithmic sentence was translated in the Visual Basic 6.0 code as c = a + b because, in
that high-level language, the equal sign represents an assignment operation (i.e., the value a+b
is assigned, or stored into, c). Since the equal sign (=) represents assignment in most high-
level languages, it is possible to write the sentence n = n + 1. This sentence, rather than
representing an algebraic equality that will result in the wrong result 0 = 1, indicates that the
value contained in variable n is to be incremented by 1, and the resulting value is to be stored
into n.

Basic programming structures
There are three basic programming structures: sequence, decision, and loops.

Sequential structure
A sequential structure was used in the previous section to illustrate the use of flowcharts.
Sequential structures have a single entry point and a single output point, and consist of a
number of steps executed one after the other. Sequential structures can be useful in simple
operations such as the addition of two numbers as illustrated earlier. The following pseudo-
code illustrates a sequential structure consisting of entering a number and evaluating a
function given by a single expression:

- 4 -

start
request x
calculate y = 3 sin(x)/(sin(x)+cos(x))
display x, y

end

Decision structure
A decision structure provides for an alternative path to the
program process flow based on whether a logical statement
is true or false. For example, suppose that you want to
evaluate the function

−≥−
−<+

=
1|,1|
1|,1|

)(
xifx
xifx

xf .

The flowchart to the right indicates the process flow of a
program that requests a value of x and evaluates y = f(x).

The diamond contains the logical statement that needs to
be checked to determine which path (T - true, or F - false)
to follow. Regardless of which path is followed from the
diamond, the control is returned to the display statement.
Notice that the input statement and the decision statement
form a sequence structure in this flowchart. As in this
example, the three types of structures under consideration
(sequence, decision, loop) do not appear alone, but two or
three are commonly combined in many algorithms.

The algorithm illustrated above can be written in pseudo-code as follows:

start

input x
if x<-1 then

y ! |x+1|
else

y ! |x-1|
display x,y

end

The following function represents a possible translation of this pseudo-code into SCILAB code:

function f00()
x = input(“Enter x:”)
if x<-1 then

y = abs(x+1)
else

y = abs(x-1)
end
disp(y, “y = ”, x, “x = ”

- 5 -

A possible translation into Visual Basic 6.0 is shown next:

Private Sub f00_click()
Dim x As Double, y As Double
x = Input(“Enter x:”)
If x<-1 Then

y = abs(x+1)
Else

y = abs(x-1)
End If
MsgBox(“x = ” & x & “, y = ”, y)

End Sub

The decision structure shown above is such that an action is taken whether the condition
tested is true or false. In some cases, if the condition tested is false, no action is taken. This
is illustrated in the flowchart to the right that describes the definition of the function absolute
value:

<−
>

=
0,

0,
)(

xifx
xifx

xf

Notice that the value of x is redefined as -x if x < 0, but it
does not change if x>0. Thus, action is only taken if the
condition x<0 is true (T). In pseudo-code, this algorithm will
be written as:

start

input x
if x<0 then

x = -x
display x

end

The translation into SCILAB, for example, is pretty straightforward:

function fAbs()
x = input(“x = “)
if x<0 then

x = -x
end
disp(x, “|x| = ”)

For Visual Basic 6.0, the code may look like this:

Private Sub fAbs_click()
Dim x As Double
x = Input(“Enter x:”)
If x<0 Then x = -x
MsgBox(“x = ” & x & “, y = ”, y)

End Sub

- 6 -

A decision structure may include more than one or two
possible paths. For example, if we define a function
f(x) by

<≤+
<≤

<−

=

elsewhere
xifx

xifx
xifx

xf

,0
21,1

10,
0,

)(,

depending on the different conditions listed (e.g., x<0,
0≤ x<1, etc.), one of four actions will be taken. This
decision structure is represented by the flowchart to
the right.

Notice that only three conditions are shown in this
flowchart, with a default assignment (y!0) that takes
place if none of the three conditions tested is true. In
pseudo-code, such a multiple-decision structure will be
written as:

start

input x
if x<0 then

y ! -x
else if 0 x<1 thens

y ! x
else if 1 <x<2 then

y !x+1
else

y ! 0
display x,y

end

Notice that the use of the particle else if implies that the
condition following is one of many for a specific decision
structure. If we re-write this pseudo-code as follows:

start

input x
if x<0 then

y ! -x
if 0 x<1 then

y ! x
if 1 <x<2 then

y !x+1
if x ≥ 2 then

y ! 0
display x,y

end

The meaning of the decision structure changes, even though
the result may not change. The corresponding flowchart is
shown to the right.

- 7 -

From this flowchart, it is clear that the algorithm shown represents four simple decision
structures, rather than a single decision structure with four possible outcomes as depicted
earlier.

Visual Basic 6.0 codes for the two algorithms presented above are shown in the following table:

Single decision structure with multiple outcomes

Combination of multiple decision structures

Private Sub f01A_click()
Dim x As Double
x = Input(“Enter x:”)
If x<0 then

y = -x
ElseIf 0<=x<1 then

y = x
ElseIf 1<=x<2 then

y = x+1
Else

y = 0
End If
MsgBox(“x= ”& x &“, y = ”,y)

End Sub

Private Sub f01B_click()
Dim x As Double
x = Input(“Enter x:”)
If x<0 then

y = -x
End If
If 0<=x<1 then

y = x
End If
If 1<=x<2 then

y = x+1
End If
If x>2 then

y = 0
End If
MsgBox(“x= ”& x &“, y = ”,y)

End Sub

Most high-level computer languages include a case-select structure to code a multiple-decision
structure as described above. In a case-select structure, one out of many possible outcomes is
selected depending on the value of a selector variable. An example of a case-select structure
in SCILAB is presented next in the form of a SCILAB script (a file containing SCILAB commands
loaded with the command exec):

mode(-1);//Suppresses command listing in the screen
printf(" \n")
printf("Select a case:\n")
printf("==============\n")
printf(" 1 - pi\n")
printf(" 2 - e \n")
printf(" 3 - i \n")
printf("==============\n")
n = input("")
select n
case 1 then

disp(%pi,"Pi = "),
case 2 then

disp(exp(1),"e = "),
case 3 then

disp(%i,"i = "),
else

disp("Nothing to display")
end
mode(1);//Restores command listing in the screen

- 8 -

A flowchart for this case-select structure is shown to the
right. Notice that this flow chart is not different from a
multiple-decision structure. In pseudo-code, this flowchart
could be translated as follows:

start

input n
if n = 1 then

display p
if n = 2 then

display exp(1)
if n = 3 then

display i
else

display nothing
end

The case-select structure can be incorporated into the
pseudo-code as shown next:

start

select n
case n = 1, display p
case n = 2, display exp(1)
case n = 3, display i
else, display nothing

end

Thus, the case-select structure is a way to code a multiple-
decision structure and not a different programming
structure.

If the programmer decides to use the case-select structure
from the beginning, it is possible to create a case-select
flowchart symbol as illustrated in the flowchart to the
right. Notice that this is not a standard flowchart symbol,
but a made-up one to incorporate a case-select structure
in the flowchart.

Loop structure
A loop structure represents a repetition of a statement or
statements a finite number of times. For example,
suppose that you want to calculate the following
summation

.1
1
∑

=

=
n

k
n n

S

The algorithm for the calculation is illustrated in the
flowchart shown below. Notice that the loop structure is
part of a sequence structure and that it contains a decision
structure within, thus, re-emphasizing the fact that the three basic structures (sequence,
decision and loops) commonly appear together in many algorithms. Notice also that the loop

- 9 -

structure requires an index variable, in this case k, to control when the
process will leave the loop.

The summation Sn and the index variable k are both initialized to zero
before the control is passed to the loop structure. The first action
within the loop structure is to increment the index variable k by 1 (k !
k + 1). Next, we check if the value of k has not grown beyond that of n
(k > n ?). If k is still less than n, the control is passed to incrementing
the summation (Sn ! Sn + 1/k), and back to the first step in the loop.
The process is then repeated until the condition k>n is satisfied. At
this point, the control is passed on to reporting the results n, Sn.

The pseudo-code corresponding to the flowchart shown above is the
following:

start

input n
Sn ! 0
k ! 0
do while ~(k>n)

k ! k + 1
Sn! Sn + 1/k

end loop
display n, Sn

end

Notice that instead of translating the loop structure in the flowchart
with an if statement, we used the statement do while. (Do-while statements are commonly
available in most high-level computer programming languages). Notice that a condition,
namely ~(k>n), is attached to the do while statement in the pseudo-code. The statement is to
be read as “do (the statements in the loop) while k is not larger than n”. After the condition
in the loop structure is no longer satisfied, i.e., when k>n, then the loop ends and the control
is sent to the statement following the end of the loop.

[Note: The symbol ~ represents negation in mathematical logic notation, thus, if p stands for
the statement x>0, ~p stands for ~(x>0) or x≤0].

A possible SCILAB coding of this process that uses SCILAB’s while statement is shown next.
The end of the loop is signaled by the particle end:

function myLoop1()
n = input(“Enter n:”)
Sn = 0, k = 0
while k<= n

k = k + 1
Sn = Sn + 1/k

end
disp(Sn, “Sn = ”)

- 10 -

To code this algorithm in Visual Basic 6.0 we can use the Do While-Loop structure as follows.
In this case, the loop ends at the Loop statement:

Private Sub cmdLoop1_Click()
Dim n As Integer, Sn as Single
n = Val(txtN.text)
Sn = 0 : k = 0
Do While k<=n

k = k + 1
Sn = Sn + 1/k

Loop
PicOutput.Print “Sn = ”, Sn

End Sub

An alternative pseudo-code for the loop structure of the last flowchart is shown next:

start

input n
Sn ! 0
k ! 0
do

k ! k + 1
Sn! Sn + 1/k

loop while k<n
display n, Sn

end

In this pseudo-code the test condition (loop while k<n) is located at the end of the loop
statements rather than at the beginning as in the previous case. In Visual Basic 6.0, the
coding of this pseudo-code is straightforward by using the Do-Loop While structure as follows:

Private Sub cmdLoop2_Click()
Dim n As Integer, Sn as Single
n = Val(txtN.text)
Sn = 0 : k = 0
Do

k = k + 1
Sn = Sn + 1/k

Loop While k<n
PicOutput.Print “Sn = ”, Sn

End Sub

A similar structure does not exist in SCILAB, thus, programming the latest pseudo-code in
SCILAB will have to be done by using the while statement as shown earlier.

Most high-level computer programming languages provide a for loop structure by which an
index variable is initialized, an increment to the index variable is provided, and a maximum
value of the index variable is specified. For example, in SCILAB the for structure that we
would use to calculate the summation Sn indicated above is shown next:

- 11 -

function myLoop2()
n = input(“Enter n”)
for k = 1:1:n

Sn = Sn + 1/k
end
disp(Sn, “Sn = “)

The for statement in this case uses the so-called colon operator (:) to produce a range of
values of k. Thus, the SCILAB statement 1:1:n produces a range of values 1, 2, …, n. The
general form of the range produced by the colon operator is:

k0:∆k:kf

where k0 = initial value, ∆k = increment, and kf = upper limit. Assuming ∆k>0 and k0 ≤ kf, the
colon operator will produce the values k0, k0+∆k, k0+2∆k, …, ku, where ku is the such that ku<kf
and ku+∆k>kf. For example, the range 0.25:0.20:1 will produce the set of values 0.2, 0.45,
0.65, 0.85. In this example, ku = 0.85, which satisfies ku<1 and ku+Dk = 1.05>1. The number of
elements in the rank generated by the statement K0:∆k:kf is [(kf-k0)/∆k]+1, where the symbol
[x] represents the floor function, i.e., the integer value immediately below x. Thus, the
number of elements in the range 0.25:0.20:1 is [(1-0.25)/0.2] +1 = [0.75/0.2] + 1 = [3.75] + 1 =
3+1 = 4.

When using the colon operator in SCILAB, it is possible to have a negative increment, i.e.,
∆k<0, in which case we must have k0 ≥ kf. For example, the range -0.25:-0.20:-1 includes the
values -0.25, -0.45, -0.65, - 0.85. The number of elements in the range is still calculated by
using [(kf-k0)/∆k]+1. For this case, the number of elements is [(-1-(-0.25))/-0.2] + 1 = 4.

Notes:

(1) If ∆k = 1, the increment can be omitted. Thus, in function myLoop2 shown above, we
could replace the for statement for k = 1:1:n with for k = 1:n.

(2) In a range of the form k0:∆k:kf when ∆k>0, and k0 ≥ kf, or when ∆k<0 and k0 ≤ kf , the

resulting range is empty. For example, try 5:1:1 or 1:-1:5.

(3) In a range of the form k0:∆k:kf when ∆k<0, and k0 ≥ kf, or when ∆k>0 and k0 ≤ kf , the
resulting range is infinitely large. Thus, if used to control a loop structure, the
program will enter an infinite loop (i.e., a loop without ending). You may accidentally
create an infinite loop in a program, in which case, you will have to break out of the
loop manually.

In Visual Basic 6.0, the for loop structure is referred to as a For-Next loop. A Visual Basic 6.0
coding for the program for the summation presented above is shown next:

Private Sub cmdLoop3_Click()
Dim n As Integer, Sn as Single
n = Val(txtN.text)
Sn = 0
For k = 1 To n Step 1

Sn = Sn + 1/k
Next k
PicOutput.Print “Sn = ”, Sn

End Sub

- 12 -

Notice that the loop structure starts with the statement For k = 1 To n Step 1, and ends with
the statement Next k. In general, the For statement can be written as

For k = k0 To kf Step ∆k

As with the colon operator in SCILAB, the index variable k takes the values k0, k0+∆k, k0+2∆k,
…, ku, where ku is the such that ku<kf and ku+∆k>kf if ∆k>0 and k0 ≤ kf.
Regardless of whether ∆k>0 or ∆k<0, the number of values that k takes
is also calculated as [(kf-k0)/∆k]+1, where the symbol [x] represents the
integer floor function. The notes given above for SCILAB’s colon
operator, apply also to Visual Basic 6.0’s For statement.

As we did with the case-select structure in flowcharts, we can create
our own flowchart symbol for a for loop. One possibility is the
hexagonal flowchart symbol shown to the right. Right below the in
symbol the hexagonal symbol shows the initialization of the index
variable (k! k0). Right below this initialization, within the hexagonal
symbol, the increment of the index variable is presented (k!k+∆k).
The increment step connects to the loop statements, indicating that
these statements are repeated as long as the condition k>kf is not
reached. This condition is shown in the right section of the hexagonal
symbol indicating that, when it is satisfied, the control is sent out of
the loop.

Thus, for the case of the summation program presented earlier, we
can use the flowchart shown below to the right.

The corresponding pseudo-code will look like this:

start

input n
Sn ! 0
for k = 1, Dk = 1, k>n

Sn ! Sn + 1/k
end For loop
display n, Sn

end

Recall that the hexagonal for loop symbol is not a standard
flowchart symbol, but one made up to represent the for
programming structures that are available in most high-level
computer programming languages.

Splitting the flowchart

Sometimes, a complete flowchart will not fit in the paper. In such
cases, you can split the flowchart by creating sub-flowcharts linked
by circles identified with numbers or letters. The following
example shows the same flowchart to the right, but split into three
parts. The links are identified with Greek letters.

- 13 -

Hierarchy charts

Hierarchy charts are charts that show the different components of a program identified by
tasks. A hierarchy chart is not as detailed as a flowchart or pseudo-code, instead, it shows the
relationship between different components of a program in a concise manner. The hierarchy
chart is used to strategize the coding of a program by splitting the program into self-contained,
but interrelated, components. We will learn that such components can be coded as functions
in SCILAB or as Sub procedures or Function procedures in Visual Basic 6.0. Once a program is
divided into its components, flowcharts or pseudo-code can be developed for the individual
components before coding the program.

The following is an example of a hierarchy chart developed to solve the problem of uniform
flow in a trapezoidal open channel (a common problem in civil engineering hydraulics). The
solution was produced in Visual Basic 6.0. The chart shows all the Sub procedures and Function
procedures (one only, fManning) included in a Visual Basic 6.0 project called prjManning.

This example is presented here just to illustrate the concept of hierarchy charts (also known as
top-down charts). Details of the program developed will be presented elsewhere.

This document was prepared by Gilberto E. Urroz on June 1-21, 2002.

	Programming the computer
	Tools for programming
	Flow charts
	Coding a program

	Pseudo-code

	Basic programming structures
	Sequential structure
	Loop structure

	Recall that the hexagonal for loop symbol is not a standard flowchart symbol, but one made up to represent the for programming structures that are available in most high-level computer programming languages.
	Splitting the flowchart
	Hierarchy charts
	The following is an example of a hierarchy chart developed to solve the problem of uniform flow in a trapezoidal open channel (a common problem in civil engineering hydraulics). The solution was produced in Visual Basic 6.0. The chart shows all the Su

